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The Representation Theory of Decoherence
Functionals in History Quantum Theories†

Oliver Rudolph1

Received December 8, 1999

In the first part of this paper the general perspective of history quantum theories
is reviewed. History quantum theories provide a conceptual and mathematical
framework for formulating quantum theories without a globally defined
Hamiltonian time evolution and for introducing the concept of space-time event
into quantum theory. On a mathematical level a history quantum theory is
characterized by the space of histories, which represent the space-time events, and
by the space of decoherence functionals, which represent the quantum mechanical
states in the history approach. The second part of this paper is devoted to the
study of the structure of the space of decoherence functionals for some physically
reasonable spaces of histories in some detail. The temporal reformulation of
standard Hamiltonian quantum theories suggests to consider the case that the
space of histories is given by (i) the lattice of projection operators on some
Hilbert space or, slightly more generally, (ii) the set of projection operators in
some von Neumann algebra. In the case (i) the conditions are identified under
which decoherence functionals can be represented by, respectively, trace class
operators, bounded operators, or families of trace class operators on the tensor
product of the underlying Hilbert space by itself. Moreover, we discuss the
naturally arising representations of decoherence functionals as sesquilinear forms.
The paper ends with a discussion of the consequences of the results for the
general axiomatic framework of history theories.

1. INTRODUCTION

In standard textbook Hamiltonian quantum mechanics the time variable
is fixed from the outset as the variable conjugate to the Hamiltonian. A
quantum mechanical system is described with the aid of a single-time Hilbert
space Hs. (For simplicity we consider here and in the sequel only quantum
systems without superselection rules.) The observables associated with the

† This paper is dedicated to the memory of Gottfried T. Rüttimann.
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system are identified with self-adjoint operators on the single-time Hilbert
space Hs and the quantum mechanical states of the physical system with
density operators on the single-time Hilbert space Hs. As is obvious from
these statements, all observables and states are associated with a fixed time
(or slightly more generally with a fixed spacelike hypersurface) and there is
no notion of observable associated with an extended region of space-time in
standard quantum mechanics. The time evolution is governed by certain
unitary operators on the single-time Hilbert space Hs.

The aim of the history approach (at least for the purpose of the present
investigation) is to formulate an intrinsically quantum mechanical formalism
in which observables and states are associated with extended space-time
regions and in which time plays a potentially subsidiary role. There have
been a few attempts in the literature to extrapolate the usual Hilbert space
formalism to situations involving observables associated with extended space-
time regions in an ad hoc way. However, it is not a priori clear whether
such a simple strategy can be justified. In contrast in the history approach
[particularly in the approach pioneered by Isham (1994)], one proceeds along
a different route. Methodologically, what one is trying to do is to find a
quantum mechanical formalism involving space-time observables and states
by starting by suitably reformulating standard quantum mechanics. In the
present paper we review the progress of this program which has been made
in the recent years, (Isham, 1994, 1997; Isham and Linden, 1994, 1995 1997;
Isham et al., 1994, 1998; Rudolph, 1996a, 1996b, 1998, 1999a, 1999b),
Rudolph and Wright (1997, 1998, 1999), Schreckenberg, 1995, 1996a, b,
1997; Wright, 1995, 1998, 1999a, 1999b).

This article is structured as follows. In the first part (Sections 2 and 3) we
review the general framework and perspective of so-called history quantum
theories. Specifically, we discuss the history reformulation of nonrelativistic
quantum mechanics in the case that the underlying single-time Hilbert space
Hs is finite dimensional and introduce the notion of decoherence functional,
which represent the states in the present approach. This history reformulation
of standard quantum mechanics serves as motivation for Isham’s algebraic
axiomatization of general history quantum theories. The temporal reformula-
tion of standard quantum mechanics suggests we consider general history
quantum theories for which the space of histories is given by (i) the lattice
of projection operators on some Hilbert space or, slightly more generally,
(ii) the set of projection operators in some von Neumann algebra. The second
main part of this article (Section 4) is devoted to the representation theory
of decoherence functionals both in general history theories and in the history
reformulation of standard quantum mechanics. If the underlying history Hil-
bert space * is finite dimensional, a complete classification of decoherence
functionals has been given by Isham, et al. (1994) with their so-called ILS-
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theorem, which establishes a one-to-one correspondence between bounded
decoherence functionals and certain trace class operators. In the case that the
history Hilbert space * is infinite dimensional, we shall be concerned with
the problem of determining the decoherence functionals for which the ILS-
theorem can be generalized. Moreover, we shall discuss the natural representa-
tions of bounded decoherence functionals as sesquilinear forms with a natural
representation on a Hilbert space. Since the history reformulation of standard
nonrelativistic quantum mechanics is the motivating example for the history
approach, we shall be particularly interested in representations of the standard
decoherence functional dr associated with the initial state r in standard
quantum mechanics. We conclude with a discussion of our results for the
general framework for history theories proposed by Isham and put forward
a modified axiomatization of history quantum theories.

Notations and Conventions

Throughout this work we will make use of Dirac’s ket and bra notation
to denote vectors in Hilbert space and dual vectors in the dual Hilbert space,
respectively. We adopt the convention that inner products of Hilbert spaces
are linear in the second variable and conjugate linear in the first variable.

Throughout this work H and * denote Hilbert spaces, 3(H) denotes
the lattice of all projection operators on a Hilbert space H, @(H) denotes
the set of all bounded operators on H, and _(H) denotes the set of compact
operators on H. The tensor product of the two Hilbert spaces *1 and *2 is
denoted by *1 ^ *2. The algebraic tensor product of _(*1) with _(*2) is
denoted by _(*1) ^alg _(*2). The symbol Hs always denotes the single-
time Hilbert space in standard quantum mechanics.

2. THE HISTORY REFORMULATION OF STANDARD
QUANTUM MECHANICS

2.1. Homogeneous Histories

Our starting point toward a formal definition of the notion of history is
the observation that, by virtue of the spectral theorem, every observable in
standard quantum mechanics can be disintegrated in two-valued yes–no
observables which are represented by projection operators on the single-time
Hilbert space Hs. In a first step toward the history reformulation of standard
quantum mechanics one considers finite sequences of projection operators
(Griffiths, 1984)

h 5 Pt1, Pt2, . . . , Ptn

labeled by a discrete set of time parameters {t1, . . . , tn}. We call such a
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sequence h a homogeneous history. Operationally, one may think of such a
sequence as representing a sequence of possible measurement outcomes.

Standard quantum mechanics suggests the following Ansatz for the
quantum mechanical probability of a homogeneous history h in the state r,
which we denote by the symbol dr(h, h):

dr(h, h) 5 trHs(Ptn ??? Pt2Pt1rPt1Pt2 ??? Ptn). (1)

This expression coincides with the formula for the probability of the sequence
of measurement outcomes corresponding to the sequence of projections
{Pt1, . . . , Ptn} in a measurement situation (Wigner, 1963). [Notice that we
are working in the Heisenberg picture here and suppress for notational simplic-
ity the unitary time evolution operators in the expression for the probability.]

At this stage we face a list of problems:

1. The space of all homogeneous histories carries no obvious “nice”
and simple mathematical structure and, particularly, in general it is
not obvious what are the appropriate mathematical representatives
corresponding to propositions like, “the history h or the history k
is realized,” “the histories h and k are both realized,” and “the
history h is not realized.”

2. There is no notion of “sum” of homogeneous histories.
3. Therefore there is no additive probability measure on the space of

homogeneous histories.

2.2. Temporal Quantum Logic

The first two problems have been solved by Isham (1994). He observed
that every homogeneous history h 5 {hti} can be canonically mapped to
some projection operator on the n-fold tensor product Hilbert space ^tiHti
(where Hti 5 Hs for all i) of the single time Hilbert space Hs by itself via

h . {hti} ° ht1 ^ ??? ^ htn.

Now we observe that the space 3(^tiHti) of all projections on this tensor
product Hilbert space carries the structure of a lattice. The central postulate
in Isham’s temporal quantum logic is to identify all projections in
3(^tiHti) with physical histories. The lattice-theoretic operations in
3(^tiHti) then provide a natural solution to the first two problems men-
tioned above.

The space of all histories can then be identified with the following
direct limit:
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3 :5 lim{3(^tiPlHti).l , R finite}.

All histories in 3 which are not homogeneous are also called inhomoge-
neous histories.

Having identified the space of histories in the history reformulation of
standard quantum mechanics, we are now interested in knowing what the
dual notion representing the states is.

2.3. Decoherence Functionals

A decoherence functional d is a bivariate, complex-valued functional
d: 3 3 3 → C such that for all a, a8, b P 3 with a ' a8:

• d(a, a) P R and d(a, a) $ 0.
• d(a, b) 5 d(b, a)*.
• d(1, 1) 5 1 and d(0, a) 5 0 for all a.
• d(a ∨ a8, b) 5 d(a, b) 1 d(a8, b).

The idea behind the positivity requirement for the diagonal values of d
is that d(a, a) represents the probability of the history a.

The prime and motivating example for a decoherence functional with
the above list of properties is the decoherence functional dr in standard
quantum mechanics associated with the initial state r, which is defined for
homogeneous histories h . {hti} and k . {ktj} by

dr(h, k) :5 tr(htnhtn21 ??? ht1rkt1 ??? ktn). (2)

This is a modest generalization of the above expression for the probability
dr(h, h) of some history h. When the single-time Hilbert space Hs is finite
dimensional, then the decoherence functional dr so defined can uniquely be
extended to a bi-additive function on the set of all histories 3, as will be
shown below. However, we shall also argue below that dr cannot be extended
to a finitely valued functional on the set 3 of all histories if the single-time
Hilbert space is infinite dimensional.

2.4. ILS-Representation for dr

The decoherence functional dr associated with the initial state r in
standard quantum mechanics defined for homogeneous histories by Equation
(2) admits a so-called Isham–Linden–Schreckenberg representation (ILS-
representation) (Isham et al., 1994). This means that for all n-time histories
h 5 ht1 ^ ??? ^ htn and k 5 kt1 ^ ??? ^ ktn there exists a trace class operator
Xr on the 2n-fold tensor product *n ^ *n 5 Ht1 ^ ??? ^ Htn ^ Ht1 ^ ???
^ Htn of the single-time Hilbert space Hs by itself such that dr can be
represented as
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dr(h, k) 5 tr*n^*n(h ^ kXr). (3)

The operator Xr depends both on the initial state r and on the unitary time
evolution operator U(t, t8). The dependence on U can explicitly be split up as

Xr 5 (U †
t1,t2,...,tn ^ U †

t1,t2,...,tn)Yr(Ut1,t2,...,tn ^ Ut1,t2,...,tn))

where

Ut1,t2,...,tn :5 U(t0, t1) ^ U(t0, t2) ^ ??? ^ U(t0, tn).

We are left with an operator Yr depending only on the initial state r. The
operator Yr admits a representation as a series

Yr 5 o
i1,...,i2n

vi1{.e1
i1&^e

2n
i2n. ^ .e2n

i2n
&^e2n21

i2n21. ^ ??? ^ .en12
in12&^e

n11
in11.

^ .e2
i2&^e

1
i1. ^ .e3

i3&^e
2
i2] ^ ??? ^ .en11

in11&^e
n
in.}.

The vi are determined by the spectral resolution of r 5 (i vi.er
i &^er

i .. The
orthonormal bases {.ej

ij&}, j P {2, . . . , 2n}, are completely arbitrary, whereas
.el

i& 5 .er
i & for all i.

If we restrict ourselves to homogeneous histories h and k, then the ILS-
representation in Equation (3) is valid both when the single-time Hilbert
space is finite dimensional and when it is infinite dimensional. In the finite-
dimensional case Xr is a trace class operator. Thus, trivially, dr can be
extended to the set 3 of all histories. In the infinite-dimensional case it can
be shown (Rudolph and Wright, 1999) that Xr is only a bounded operator.
Therefore in the infinite-dimensional case dr can in general not be extended
to the space of all histories. We shall come back to this issue below.

2.5. Consistent Sets of Histories

It remains to solve the third problem mentioned in Section 2.1, that there
is no additive probability measure on the space of homogeneous histories. We
have seen that in the history approach the states are identified with decoher-
ence functionals. Again, these decoherence functionals do not define a proba-
bility measure on the set of all histories.

The situation is analogous to standard single-time quantum mechanics.
Here the states are given by density operators on the single-time Hilbert
space which do not induce probability measures on the set of all observables.
In standard quantum mechanics we call a set of observables compatible if
the state induces a joint probability measure on the set of possible values of
the observables. It is well known that a set of observables is compatible if
and only if the associated self-adjoint operators are pairwise commuting



Decoherence Functionals in History Quantum Theories 877

(particularly, the notion of compatibility of observables is independent of
the state).

Generalizing this point of view to the histories approach, one calls a set
of histories consistent if the decoherence functional induces a probability
measure on this set of histories. It is easy to prove that a Boolean sublattice
# of 3 is consistent if and only if Re dr(h, k) 5 0 for all orthogonal h, k P
#. The consistent sets of histories are thus the generalizations of commuting,
compatible observables in standard quantum mechanics, and the existence
of several mutually inconsistent consistent sets is just the expression of the
complementarity principle in the histories approach.

3. GENERAL HISTORY THEORIES

The history reformulation of standard quantum mechanics in finite
dimensions reviewed above led Isham (1994) to his axiomatic framework
for general history quantum theories. According to his framework, a general
history theory is characterized by two sets.

First there is the space of histories 8, which carries the structure of a
lattice, an orthoalgebra, a D-poset, or another algebraic structure such that
(i) there is a partial order defined, (ii) there is a least element 0 and a greatest
element 1 with respect to this partial order, and (iii) there is a notion of
orthogonality between elements (denoted by ') and a notion of sum (denoted
by %) for orthogonal elements. The tentative physical interpretation of the
histories is that they represent propositions about events in extended regions
of space-time.

Dual to the space of histories is the space of decoherence functionals,
which represent the generalized states in the history approach. Recall that
decoherence functionals are bivariate, complex-valued functionals
d: 8 3 8 → C such that for all a, a8, b P 8 with a ' a8:

• d(a, a) P R and d(a, a) $ 0.
• d(a, b) 5 d(b, a)*.
• d(1, 1) 5 1 and d(0, a) 5 0 for all a.
• d(a % a8, b) 5 d(a, b) 1 d(a8, b).

The history reformulation of standard quantum mechanics in finite
dimensions suggests that a natural choice for the space of histories is given
by the set of projection operators on some (history) Hilbert space * or in
some von Neumann algebra !. In the rest of this paper we shall exclusively
consider these two cases. The second part of this paper is devoted to the
problem of determining what can be said about the structure of the space of
decoherence functionals for these choices of the space of histories.
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4. THE REPRESENTATION THEORY OF DECOHERENCE
FUNCTIONALS

4.1. Finite-Dimensional History Hilbert Spaces

First let us consider an abstract history theory (as described in Section
2.5) for which the space of histories is given by the set of projection operators
3(*) on some finite-dimensional Hilbert space * (with dimension greater
than two).

In this case the classification problem for decoherence functionals has
been completely solved by Isham et al. (1994). According to their result,
there exists a one-to-one correspondence between uniformly bicontinuous
decoherence functionals d for * and trace class operators X on * ^ *
according to the rule

d( p, q) 5 tr*^*(( p ^ q)X) (4)

for all projections p, q P 3(*) with the following restrictions:

• tr*^*(( p ^ q)X) 5 tr*^*((q ^ p)X*).
• tr*^*(( p ^ p)X) $ 0.
• tr*^*(X) 5 1.

In particular, every such decoherence functional is bounded. This is result is
often also referred to as the Isham–Linden–Schreckenberg theorem (ILS-
theorem).

4.2. Infinite-Dimensional History Hilbert Spaces

4.2.1. ILS-Type Representations

A question which arises immediately is, What can be said for history
theories where the space of histories is given by the set of projections on
some infinite-dimensional Hilbert space *?

In the sequel we will make use of the following theorem, which is a
special case of a more general result proved in Wright (1995).

Theorem 4.1. Let * be a Hilbert space which is either infinite dimensional
or of finite dimension greater than two. Then a decoherence functional d on
* can be extended (uniquely) to a bounded bilinear form $: @(*) 3 @(*) →
C if, and only if, d is bounded.

An immediate consequence of Theorem 4.1 is then that, by the fundamen-
tal property of the algebraic tensor product, there is a unique linear functional
b: _(*) ^alg _(*) → C on the algebraic tensor product of _(*) by itself
such that
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b(x ^ y) 5 $(x, y) (5)

for all x, y P _(*). In particular, d( p, q) 5 b( p ^ q) for all projections p
and q in _(*).

The functional b can now be used to completely characterize the set
of decoherence functionals in the infinite-dimensional case admitting an
ILS-representation.

Tensor Bounded Decoherence Functionals

Definition. A decoherence functional d is said to be tensor bounded if
the associated functional b is bounded on _(*) ^alg _(*), when _(*) ^alg

_(*) is equipped with its unique pre-C*-norm induced by the operator norm
on @(* ^ *).

Theorem 4.2. Let * be a Hilbert space which is not of dimension two.
Let d be a bounded decoherence functional for *. Then d is tensor bounded
if, and only if, there exists a trace class operator X on * ^ * such that

d( p, q) 5 tr*^*(( p ^ q)X) (6)

for all projections p and q in 3(*).

Thus we conclude that in the infinite-dimensional case a bounded deco-
herence functional d admits an ILS-representation if and only if it is tensor
bounded.

Tracially Bounded Decoherence Functionals. There is another physically
important class of decoherence functionals, the so-called tracially bounded
decoherence functionals.

Definition. A decoherence functional d is said to be tracially bounded
if it is bounded and, when b is the corresponding linear functional on
_(*) ^alg _(*), there exists a constant C such that, for each unit vector j
in * ^alg *, .b(.j&^j.). # C.

Then we have the following theorem.

Theorem 4.3. Let the decoherence functional d be tracially bounded for
*, where * is separable and of dimension greater than two. Then there exists
a unique bounded linear operator M on * ^ * such that

d( p, q) 5 tr*^*(M( p ^ q)) (7)

whenever p and q are finite-rank projections on *. Let d be moreover
countably additive, then whenever p and q are projections in 3(*) and
{pn}nPN and {qn}nPN are, respectively, orthogonal families of finite-rank
projections with p 5 (nPN pn and q 5 (nPN qn ,
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d( p, q) 5 o
`

i51
o
`

j51
tr*^*(( pi ^ qj)M). (8)

Thus we see that tracially bounded decoherence functionals admit a
pseudo-ILS-representation by some bounded operator as in Equation (7).

4.2.2. The Standard Decoherence Functional dr in Infinite Dimensions

Tracially bounded decoherence functionals are of particular interest since
the standard decoherence functional dr in the history reformulation of standard
quantum mechanics is tracially bounded.

The proof is quite easy (Rudolph and Wright 1999). In finite dimensions
this is trivial. In infinite dimensions the argument is as follows. For simplicity
of notation we consider only two time histories; the general case is analogous.
First recall the ILS-representation of dr valid for pairs of homogeneous
histories p, q,

dr( p, q) 5 o
dim Hs

j1,..., j451
vj1^e

4
j4 ^ e3

j3 ^ cj1 ^ e2
j2,

( p ^ q)(cj1 ^ e4
j4 ^ e2

j2 ^ e3
j3)&.

It is easy to see that the series still converges if we replace p ^ q by a
compact operator of rank one. This implies that we can define a sesquilinear
form Sr by

Sr(j, h) 5 o
dim Hs

j1,..., j451
vj1^e

4
j4 ^ e3

j3 ^ cj1 ^ e2
j2, j&^h, cj1 ^ e4

j4 ^ e2
j2 ^ e3

j3&.

The Cauchy–Schwarz inequality implies that Sr is bounded: .Sr(j, h). #
|j| ? |h|, which in turn implies .br( pj ). 5 .Sr(j, j). # 1. This implies that
there exists a bounded operator Xr such that Sr(j, h) 5 ^h, Xrj& and by
straightforward computation one verifies that Xr coincides with the ILS-
operator associated with dr in Section 2.4. Thus dr admits a pseudo-ILS-
representation as in Theorem 4.3 with M replaced by Xr and since dr is,
moreover, countably additive, the analogue of Equation (8) is also satisfied
(whenever well defined).

As we shall see below, dr is in general not bounded (and not even
finitely valued) on the space of all histories 3. Thus we cannot apply Theorem
4.1 to infer the existence of the functional br associated with dr. However,
from the ILS-series for dr we can directly infer the existence of br on a
suitably smaller chosen domain of definition.

Nonexistence of a Finitely Valued Extension of dr. As already mentioned
repeatedly, if the single-time Hilbert space is infinite dimensional, then the
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standard decoherence functional dr defined on homogeneous histories by
Equation (2) cannot be extended to a finitely valued functional on the set of
all projection operators on the tensor product Hilbert space. We assume for
simplicity that the single-time Hilbert space is separable. Consider the ILS-
representation for dr in Equation (3). For simplicity of notation we consider
the case n 5 2. We define

Dr( p, q) 5 o
dim H

j1,..., j451
vj1^e

4
j4 ^ e3

j3 ^ cj1 ^ e2
j2,

( p ^ q)(cj1 ^ e4
j4 ^ e2

j2 ^ e3
j3)& (9)

for all histories p, q P 3(Ht1 ^ Ht2) for which the sum converges. Now
choose e4

j 5 e3
j 5 e2

j 5 cj for all j. Fix i1 and let wi :5 (1/!2)(.ci ^ ci1& 1
.ci1 ^ ci&) for every i P N \{i1}. Then clearly wi ' wj if i Þ j. Set
fj1, j2, j3(q) :5 ^cj1 ^ cj2, q(cj2 ^ cj3)&, then an easy computation shows that

Dr(Pwi, q) 5
1
2 o

j2

(vi1 fi1, j2,i1(q) 1 vi fi, j2,i(q))

for i Þ i1, where Pwi denotes the projection operator onto the subspace spanned
by wi. Put P 5 (iÞi1 Pwi; then clearly the expression in Equation (9) for
Dr(P, q) does not converge for arbitrary q.

This proves that if the single-time Hilbert space is infinite dimensional,
there does not exist a finitely valued extension of dr to the set of histories 3.

4.2.3. Bounded Decoherence Functionals

We now return to our discussion of representations of decoherence
functionals in general history theories. We have identified above the classes
of decoherence functionals admitting an ILS-representation and a pseudo-
ILS-representation, respectively. It is also of some interest to see what can
be said about general bounded decoherence functionals. Although a bounded
decoherence functional in general does not admit an ILS-representation, they
can be approximated by a series of ILS-representable decoherence functionals
in the following sense.

Proposition 4.4. Let * be a Hilbert space with dim(*) . 2 and let d :
3(*) 3 3(*) → C be a bounded decoherence functional for *. Then there
exist families of trace class operators {Xi}iPl and {Yi}iPl on *, where, for
each x and y in _(*), (iPl .tr*(xXi).2 and (iPl .tr*( yYi).2 are convergent
and, for all p, q P _(*),

d( p, q) 5 o
iPI

tr*^*( p ^ q(Xi ^ X*i 2 Yi ^ Y*i )) (10)

where the infinite series is absolutely convergent.
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4.3. Representations as Sesquilinear Forms

4.3.1. Bounded Decoherence Functionals

There is an alternative representation theorem for bounded decoherence
functionals in general history theories as bounded sesquilinear forms on a
Hilbert space due to Wright (1995). This is valid also for history theories
over von Neumann algebras (with no type I2 direct summand).

Theorem 4.5. Let A be a von Neumann algebra with no type I2 direct
summand and d: 3(A) 3 3(A) → C a bounded decoherence functional.
Then there exists a map x . [x] from A into a dense subspace of a Hilbert
space * and a self-adjoint operator T on * such that

D(x, y) 5 ^T [x], [y]&

is an extension of d.
Alternatively, there exist semi-inner products ^?, ?&1 and ^?, ?&2 on *

such that

d( p, q) 5 ^p, q&1 2 ^p, q&2.

The proof makes use of the profound Haagerup–Pisier–Grothendieck
inequality to associate a state (in the C*-algebraic sense) with the decoherence
functional. The Hilbert space is then constructed via a GNS-type construction.

4.3.2. Standard Decoherence Functional

As shown above, in standard quantum mechanics the standard decoher-
ence functional dr does not admit a finitely valued extension to the set of all
histories in Isham’s framework. Thus there is also no hope to represent it as
a bounded sesquilinear form on some Hilbert space. However, there is a
natural representation of the standard decoherence functional as an unbounded
sesquilinear form, which in brief can be constructed as follows.

If Hs is infinite dimensional, then dr can be extended to a bilinear
functional on @(Hs) ^alg ??? ^alg @(Hs) (n times) as

Dr(b, b8) :5 tr(P(b8)†P(b)r)

where P is defined on homogeneous elements by P(b1 ^ ??? ^ bn) 5 bn ???
b1 and extended to all of @(Hs) ^alg ??? ^alg @(Hs) by linearity.

Theorem 4.6. There exists a Hilbert space * and a linear operator Rr

from @(Hs) ^alg ??? ^alg @(Hs) into a dense subspace of * such that

Dr(b, b8) 5 ^Rr(b8), Rr(b)&

for all b, b8, P @(Hs) ^alg ??? ^alg @(Hs). (Here ^?, ?& denotes the inner
product in *.) Rr is unbounded if and only if Hs is infinite dimensional.
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5. GENERAL HISTORY THEORIES II

At this stage it is worthwhile to recall that Isham’s axiomatic framework
for general history theories sketched in Section 3 was motivated by the history
reformulation of standard quantum mechanics in finite dimensions.

The results reported in this paper, in particular the negative result that
the standard decoherence functional in infinite dimensions cannot be extended
to the space of “all” histories in Isham’s framework on the one hand and the
positive result that the standard decoherence functional admits nevertheless
a natural representation as an unbounded sesquilinear form on some Hilbert
space on the other hand, indicate that Isham’s axiomatic framework needs
to be modified.

We conclude this paper by indicating what in our opinion is the appro-
priate structure.

According to our proposal a general history theory is characterized by
two sets.

1. The set of propositions which is embedded into a Hilbert space *.
The propositions are interpreted in physical terms as propositions
about events in extended regions of space-time.

2. The set of states which are identified with bounded or unbounded
sesquilinear forms s on the Hilbert space *.

The probability of a proposition x P $(s) in the domain of definition
of some sesquilinear form is given by s(x, x). This framework for temporal
quantum theories has been discussed in more detail in Rudolph (1999a).
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